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ABSTRACT 

 
We focus on the specific problem of inversion of a collection of one-dimensional projections to reconstruct a three-
dimensional image of a rigid body and estimate its orientation. We assume correspondence of the points in the 
projections is given and derive several useful results leading to an iterative solution algorithm and a fundamental 
understanding of its possible scope. Finally, the algorithm was simulated on synthetic HRR data which verified its 
function and convergence.  
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1.  INTRODUCTION 
This work was motivated by the problem of improving pose estimates of vehicles using radar to improve tracking and 
recognition algorithms. As ground vehicle movement is restricted to a two-dimensional surface, we were mainly 
concerned with the component of orientation within this surface, referred to as yaw in the aviation field1. When we 
apply the theory to the application of pose estimation, therefore, we specifically are concerned with the component of 
orientation locally parallel to the ground plane. The remaining components of orientation, namely the pitch and roll, 
will be contained collectively in a “tilt” variable for our purposes. However, we will approach the problem of 
estimating three-dimensional orientation generally in the next section. 
 
In our analysis, we make the following assumptions: 
 

1. The object under observation is a rigid body. This is an obvious assumption for application to vehicles 
generally. It is weaker perhaps when working in fields such as medical tomographic imaging or face 
recognition. 

 
2. The plane wave approximation is valid. This is a very safe assumption in dealing with vehicles observed from 

afar as the wavefront curvature on the scale of the vehicle should be negligible. A similar approach to ours 
would probably be successful without using this approximation, but for the applications we are interested in 
the additional complications would be unnecessary. 

 
3. The collection of projections span three dimensions. Additionally, as has been discussed elsewhere, a 

minimum of five looks containing nine points each is needed for a unique solution2. What is meant by 
uniqueness of the solution for our purposes will be discussed later.  

 
4. Correspondence of points between the projections is given. This is the most sweeping assumption made in this 

analysis. Confidently achieving correspondence at times can be very difficult, and the success of doing so can 
be very data and target dependent. We will not address this problem here. 

 
This approach when applied to radar is based on the modeling of the object as a collection of scattering centers, and the 
HRR signature as a one-dimensional projection of those scatterers3. Each individual signature is assumed to be an 
observation of the object, from which we extract range measurements to each of the scatterers, from a separate 
viewpoint, or “look”. This is shown in the following figure.  
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Figure 1: Two-dimensional example depicting notation, and showing the application to a HRR signature. 

2.  THEORY 
Our first objective is to derive analytic solutions for the optimal estimate of the object’s orientation and three-
dimensional point locations, which we refer to as “model”. We use the mean-squared error as our criterion for 
optimality. The return data model )( p

nr  which is the range for a particular look and scatterer follows: 
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where w  is the look vector, nx  is the location of the nth  individual scatterer and )( pR  is the three-dimensional 

rotation4 of the target model about 0x , some fixed point on the object, for the pth  look. Note that we are only 
concerned with relative locations of the points on the object; the absolute location of the object is of no concern. The 
mean-squared error in our estimate is therefore 
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where there are P looks and N scatterers in the data.  

1.1 Finding the Orientation Given the Model 
First we will only be concerned with averaging over n (the scatterer index) as we are concentrating on a particular p 
(the look index). Our approach is to find the optimal orientation by taking the derivative of the mean-squared error with 
respect to rotations as follows.  
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For some function J(R) of a rotation R, the directional derivative in unit rotation direction D is 
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where αD  is a rotation in the amount α  about an axis l 5. The derivative is taken and set to zero for all l leading to the 
necessary condition 
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where I is the 3 by 3 identity matrix and λ  is some scalar. This result is not yet complete as we note that not all values 
of λ  will yield a solution, though there should be more than one solution. The case of λ =0 fits with the 
straightforward derivation of optimal wR p)(  performed (as opposed to optimal )( pR ) by setting the gradient of 

equation (3) with respect to wR p)(  equal to zero yields 
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The difference here is the optimum is taken over all three dimensions of space rather than simply over rotation yielding 
a potentially different result in the presence of noise. The forms of the results can be made identical by adding the 
constraint that the length of wR p)(  must be constant, i.e. rotations do not distort length. 

Geometrically, this result describes an infinite number of solutions for )( pR  as a single-look projection cannot resolve 
each scatterer to better than some rotation about the look vector. Our approach to dealing with this ambiguity in our 
application is to assume the vehicle is flat on the ground. 

1.1.1 Finding Solutions of optimally rotated look vector 

We will now derive the analytical solutions forλ . Since w  is a unit vector by definition and )( pR  is a rotation 
 

( ) ( ) 1)()( =wRwR pTp  (7)  
and therefore 
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It is straightforward to calculate the roots of this polynomial computationally and get the solutions, λ , and it is a 
simple matter to determine which root yields the best mean squared fit. It should be possible to use a geometrical 
insight to select the solution, however. The meaning of all these solutions remains an open question.  

1.1.2 General Form of Solution 

Once we have selected λ  we can calculate the product wR p)( . We now have the equation 
 

wRa p)(=  (10)  
 

where a  is the known vector or the product we solved for, and w  is also known. In general we can see that there are 
an infinite number of possible matrices which are solutions to this problem. We can however find the form of the 
general solution for )( pR . Assuming we know of a particular rotation )(

0
pR which is a solution, 
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For example we could use the rotation which rotates w  to a  within the plane determined by the two vectors. This can 
be computed by simple geometry using the dot and cross products. Now, we know in general we can write any rotation 
as the product of multiple rotations, so our general solution can be described as the product of )(

0
pR with another 

rotation. Therefore we describe the general solution to our problem as 
 
wRRa pp )(
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where )(
1

pR  is unknown so far. But we notice that since all rotation matrices are invertible we can manipulate this as 
 

wRaR pp )(
1

)(1
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but since )(

0
pR is a solution by definition, the left hand side of the above equation simply equals w  leaving )(

1
pR  be 

a solution to 



wRw p)(
1=  (14)  

 
This means w  remains unchanged when the rotation )(

1
pR  is applied to it. Since w  is a vector, )(

1
pR  must in general 

be a rotation about w  in some angle, ψ . We write this as ( )wR ,ψ . Therefore we can write the general solution to 
our initial problem as 

( )( ) ( )wRwawaRR p ,,cos 1)( ψ×⋅= −  (15)  
 
where we used the dot and cross products between a  and w  to get the angle and direction of one particular solution. 
ψ  could be any angle since the projection for any given look p  will be ambiguous to a rotation about the look vector. 
To resolve this ambiguity, we make use of assumptions about the vehicle orientation with respect to the ground to 
approximate the complete pose information. Basically, we assume the vehicle sits flat in the ground plane with a small 
unknown pitch and roll (which we combine into a general “tilt”). Multiple looks over a sufficient range of angles allow 
this to be done without ever performing recognition. 

1.2 Finding Model Given Orientation 

Now we consider the case of known )( pR  and unknown nx  in the signal model. 
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The squared error we now wish to consider is  
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since we must average over multiple looks to find the optimal location of each scatterer nx . Taking the gradient with 

respect to nx  and setting equal to zero yields 
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from which the locations of the scatterers can be computed directly 

1.2.1 Simultaneously Solving for Model and Orientation 
To analyze the potential ambiguities which would limit an algorithm which solves for model and orientation 
simultaneously, we write the equation (2) error in matrix form as 
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where X is a 3 by N matrix whose columns consist of the vectors 0xxn − . Similarly, A is a 3 by P matrix with 

columns )( pa . D  is a N by P matrix in which the (n, p) th element is )( p
nr . In this form it is easy to see the form of 



potential ambiguities in our minimum error result. Solutions for X  and A  which result in the same value for the 
product AX T  will yield the same error minimum. In general, if we get different solutions X ′  and A′ , we can write 
them as UX and VA , with unknown 3 by 3 matrices U and V. For this to result in the same error minimum, we require 

( ) ( ) ( ) ( )AVUXVAUXAXAX TTTTT ==′′=  (20)  
 
And it follows that for VAUX TT to equal AX T , VU T  must equal the identity matrix. Additionally, since the 
columns of both A  and A′must be unit length (they are rotated unit vectors wR p ˆ)( ), the matrix V must preserve 
length, i.e. 

yyV =  (21)  
 

for any vector y. This leads to the following observation, 
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which implies VV T equals the identity. This along with our previous result means U must equal V, and is by definition 
an orthogonal matrix. Visually, this means the transformation consists of any possible combination of a rotation and a 
reflection. 
 
As a result, we can see the minimum error result can be ambiguous within a possible orthogonal transformation 
(rotation and/or reflection), U, of the pose vectors, A, estimated (also shown considering the analogous tomography 
situation in 2). The target model, X, will be transformed by TU  which is the opposite rotation/reflection. 
 
The strategy for solving for the model and orientation simultaneously would be to start with a rough estimate of either 
model or orientation and solve for the other, and iterate this process. Due to the ambiguity in orthogonal transform 
between the model and orientation when solved simultaneously, we can expect our algorithm’s resulting accuracy to be 
somewhat limited by the value of our initial estimate. 

3.  RESULTS 
We considered how the algorithm was capable of converging assuming accurate range information and various degrees 
of inaccuracy in the initial estimates of pose and tilt of the vehicle. Here we use pose to mean the yaw as mentioned 
earlier. The tilt, i.e. the combination of roll and pitch, is assumed to be always unknown and randomly varying 
somewhat between looks as the vehicle bounces over uneven terrain for example. The following figure illustrates a 
single simulation where HRR data is generated synthetically for several look angles. In this simulation the truth is 
known but errors are added.   
 
The random numbers vary between each look and between each experiment. The poses of the algorithm output are 
compared to the known poses of the model within the synthetic data and the heading estimate errors are plotted in 
Figure 3 for a range of tests. In this case, the algorithm was run using new synthetic data twenty times for a wide range 
of input error standard deviations and for four different tilt variances.  
 
The error in the algorithm’s final result is plotted versus the error in the initial estimates used by the algorithm. For 
example, we found that if we are given HRR data describing a target and the pose of the target was already known 
within ten degrees, we could improve the accuracy of the pose estimate to within about one or two degrees. As would 
be expected, the algorithm performance degrades as the initial estimates become more inaccurate, but there is still a 
significant improvement. 
 



 
Figure 2: Example simulated model truth vs. converged estimate. The o’s are the estimates of the model’s scatterer locations 
and the x’s are their true locations. The dots are intermediate locations computed prior to convergence. The tilts and angle 
errors are synthetic random numbers chosen to produce a specific variance. 

 
Figure 3: Algorithm Resulting Accuracy 
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4.  CONCLUSION 
A number of useful theoretical results were presented in this work concerning the problem of estimating orientation of 
an object from a collection of one-dimensional projections, which led to the development of a successful pose 
estimation algorithm. Solutions for calculating the orientation given the model and vise versa were found, and the 
general forms of the solutions were shown. While it may be possible to solve analytically for the model and orientation 
simultaneously, this was not necessary for our purposes as we developed a successful iterative algorithm which was 
shown in simulations to converge to the correct solution.  
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